On the heights of algebraic points on curves over number fields
نویسنده
چکیده
Let X be a semi-stable regular curve over the spectrum S of the integers in a number field F , and L̄ = (L, h) an hermitian line bundle on X , i.e. L is an algebraic line bundle on X and h is a smooth hermitian metric (invariant by complex conjugation) on the restriction of L to the set X(C) of complex points of X . In this paper we are interested in the height hL̄(D) of irreducible divisors D on X which are flat over S, i.e. the arithmetic degree of the restriction of L̄ to D. First we assume that the degree deg(L) of L on the generic fiber XF is positive and we denote by L̄ · L̄ ∈ R the self-intersection of the first arithmetic Chern class of L̄. Define
منابع مشابه
Arithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملMAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM
We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.
متن کاملCanonical Heights on Hyperelliptic Curves
We describe an algorithm to compute canonical heights of points on hyperelliptic curves over number fields, using Arakelov geometry. We include a worked example for illustration purposes.
متن کاملOn the maximum number of rational points on singular curves over finite fields
We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.
متن کاملComponents and Projections of Curves over Finite Fields
This paper provides an algorithmic approach to some basic algebraic and combinatorial properties of algebraic curves over nite elds: the number of points on a curve or a projection, its number of absolutely irreducible components, and the property of being \excep-tional".
متن کامل